Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 66(3): 484-509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456625

RESUMO

Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.


Assuntos
Brassica napus , Brassica napus/genética , Locos de Características Quantitativas/genética , Melhoramento Vegetal , Genômica , Fenótipo
2.
Plants (Basel) ; 13(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276765

RESUMO

Seed deterioration during storage poses a significant challenge to rice production, leading to a drastic decline in both edible quality and viability, thereby impacting overall crop yield. This study aimed to address this issue by further investigating candidate genes associated with two previously identified QTLs for seed storability through genome association analysis. Among the screened genes, two superoxide dismutase (SOD) genes, OsCSD2 (Copper/zinc Superoxide Dismutase 2) and OsCSD3, were selected for further study. The generation of overexpression and CRISPR/Cas9 mutant transgenic lines revealed that OsCSD2 and OsCSD3 play a positive regulatory role in enhancing rice seed storability. Subsequent exploration of the physiological mechanisms demonstrated that overexpression lines exhibited lower relative electrical conductivity, indicative of reduced cell membrane damage, while knockout lines displayed the opposite trend. Furthermore, the overexpression lines of OsCSD2 and OsCSD3 showed significant increases not only in SOD but also in CAT and POD activities, highlighting an augmented antioxidant system in the transgenic seeds. Additionally, hormone profiling indicated that ABA contributed to the improved seed storability observed in these lines. In summary, these findings provide valuable insights into the regulatory mechanisms of OsCSDs in rice storability, with potential applications for mitigating grain loss and enhancing global food security.

3.
Plant Biotechnol J ; 22(2): 445-459, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37856327

RESUMO

Yellow-seed is widely accepted as a good-quality trait in Brassica crops. Previous studies have shown that the flavonoid biosynthesis pathway is essential for the development of seed colour, but its function in Brassica napus, an important oil crop, is poorly understood. To systematically explore the gene functions of the flavonoid biosynthesis pathway in rapeseed, several representative TRANSPARENT TESTA (TT) genes, including three structural genes (BnaTT7, BnaTT18, BnaTT10), two regulatory genes (BnaTT1, BnaTT2) and a transporter (BnaTT12), were selected for targeted mutation by CRISPR/Cas9 in the present study. Seed coat colour, lignin content, seed quality and yield-related traits were investigated in these Bnatt mutants together with Bnatt8 generated previously. These Bnatt mutants produced seeds with an elevated seed oil content and decreased pigment and lignin accumulation in the seed coat without any serious defects in the yield-related traits. In addition, the fatty acid (FA) composition was also altered to different degrees, i.e., decreased oleic acid and increased linoleic acid and α-linolenic acid, in all Bnatt mutants except Bnatt18. Furthermore, gene expression analysis revealed that most of BnaTT mutations resulted in the down-regulation of key genes related to flavonoid and lignin synthesis, and the up-regulation of key genes related to lipid synthesis and oil body formation, which may contribute to the phenotype. Collectively, our study generated valuable resources for breeding programs, and more importantly demonstrated the functional divergence and overlap of flavonoid biosynthesis pathway genes in seed coat colour, oil content and FA composition of rapeseed.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Ácidos Graxos/metabolismo , Lignina/metabolismo , Cor , Melhoramento Vegetal , Mutagênese , Flavonoides/metabolismo , Sementes/genética , Sementes/metabolismo
4.
Tree Physiol ; 43(7): 1265-1283, 2023 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-36905330

RESUMO

Waterlogging is a major abiotic stress that plants encounter as a result of climate change impacts. Peach is very sensitive to hypoxia during waterlogging, which causes poor tree vigor and huge economic losses. The molecular mechanism underlying the peach response to waterlogging and reoxygenation remains unclear. Here, the physiological and molecular responses of 3-week-old peach seedlings under waterlogged and recovery conditions were comprehensively analyzed. As a result, waterlogging significantly reduced plant height and biomass with inhibition of root growth when compared with control and reoxygenation. Similar results were observed for photosynthetic activities and gaseous exchange parameters. Waterlogging increased lipid peroxidation, hydrogen peroxide, proline, glutamic acid and glutathione contents, while superoxide dismutase, peroxidases and catalase activities were decreased. The glucose and fructose contents were accumulated, contrary to sucrose which was reduced remarkably throughout the stress periods. The level of endogenous indole acetic acid (IAA) was increased in waterlogging but decreased after reoxygenation. However, the change trends of jasmonic acid (JA), cytokinins and abscisic acid (ABA) levels were opposite to IAA. In transcriptomic analysis, there were 13,343 differentially expressed genes (DEGs) with higher and 16,112 genes with lower expression. These DEGs were greatly enriched in carbohydrate metabolism, anaerobic fermentation, glutathione metabolism and IAA hormone biosynthesis under waterlogging, while they were significantly enriched in photosynthesis, reactive oxygen species scavenging, ABA and JA hormones biosynthesis in reoxygenation. Moreover, several genes related to stress response, carbohydrate metabolism and hormones biosynthesis were significantly changed in waterlogging and reoxygenation, which indicated unbalanced amino acid, carbon and fatty acid pools in peach roots. Taken together, these results suggest that glutathione, primary sugars and hormone biosynthesis and signaling might play key roles in plant response to waterlogging. Our work provides a comprehensive understanding of gene regulatory networks and metabolites in waterlogging stress and its recuperation, which will facilitate peach waterlogging control.


Assuntos
Prunus persica , Prunus persica/metabolismo , Transcriptoma , Ácido Abscísico/metabolismo , Plantas/metabolismo , Glutationa , Hormônios
5.
Front Plant Sci ; 14: 1042430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866373

RESUMO

The Arabidopsis homeodomain transcription factor SHOOT MERISTEMLESS (STM) is crucial for shoot apical meristem (SAM) function, which cooperates with CLAVATA3 (CLV3)/WUSCHEL (WUS) feedback regulation loops to maintain the homeostasis of stem cells in SAM. STM also interacts with the boundary genes to regulate the tissue boundary formation. However, there are still few studies on the function of STM in Brassica napus, an important oil crop. There are two homologs of STM in B. napus (BnaA09g13310D and BnaC09g13580D). In the present study, CRISPR/Cas9 technology was employed to create the stable site-directed single and double mutants of the BnaSTM genes in B. napus. The absence of SAM could be observed only in the BnaSTM double mutants at the mature embryo of seed, indicating that the redundant roles of BnaA09.STM and BnaC09.STM are vital for regulating SAM development. However, different from Arabidopsis, the SAM gradually recovered on the third day after seed germination in Bnastm double mutants, resulting in delayed true leaves development but normal late vegetative and reproductive growth in B. napus. The Bnastm double mutant displayed a fused cotyledon petiole phenotype at the seedling stage, which was similar but not identical to the Atstm in Arabidopsis. Further, transcriptome analysis showed that targeted mutation of BnaSTM caused significant changes for genes involved in the SAM boundary formation (CUC2, CUC3, LBDs). In addition, Bnastm also caused significant changes of a sets of genes related to organogenesis. Our findings reveal that the BnaSTM plays an important yet distinct role during SAM maintenance as compared to Arabidopsis.

6.
J Cell Physiol ; 237(12): 4544-4550, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36256845

RESUMO

Rapeseed is an important source of oilseed crop in the world. Achieving genetic improvement has always been the major goal in rapeseed production. Single nucleotide substitution is the basis of most genetic variation underpinning important agronomic traits. Nowadays, Cas-base editing acts as an efficient tool to mediate single-base substitution at the target site. In this study, four adenine base editors (ABE) were modified to achieve adenosine base editing at different genome sites in allotetraploid Brassica napus. We designed 18 small guide RNAs to target phytoene desaturase (PDS), acetolactate synthase (ALS), CLAVATA3 (CLV3), CLV2, TRANSPARENT TESTA12 (TT12), carotenoid isomerase (CRTISO), designated de-etiolated-2 (DET2), BRANCHED1 (BRC1), zeaxanthin epoxidase (ZEP) genes, respectively. Among the four ABE systems, pBGE17 had the highest base-editing efficiency, with an average editing efficiency of 3.51%. Target sequencing results revealed that the editing window ranged from A5 to A8 of the protospacer-adjacent motif (PAM) sequence. Moreover, the ABEmax-nCas9NG system with NG PAM was developed, with a base-editing efficiency of 1.22%. These results revealed that ABE system developed in this study could efficiently induce A to G substitution and the ABE-nCas9NG system could broaden editing window in oilseed rape.


Assuntos
Brassica napus , Edição de Genes , Adenina , Brassica napus/genética , Edição de Genes/métodos , Genoma de Planta , RNA Guia de Sistemas CRISPR-Cas , Tetraploidia
7.
Plant Cell Physiol ; 63(9): 1298-1308, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35861030

RESUMO

Seed dormancy is a very complex trait controlled by interactions between genetic and environmental factors. Nitrate is inversely correlated with seed dormancy in Arabidopsis. This is explained by the fact that seed dry storage (after-ripening) reduces the need for nitrogen for germination. When nitrate is absorbed by plants, it is first reduced to nitrite and then to ammonium for incorporation into amino acids, nucleic acids and chlorophyll. Previously, we showed that ALLANTOATE AMIDOHYDROLASE (AtAAH) transcripts are up-regulated in imbibed dormant seeds compared with after-ripened seeds. AAH is an enzyme in the uric acid catabolic pathway which catalyzes the hydrolysis of allantoate to yield CO2, NH3 and S-ureidoglycine. This pathway is the final stage of purine catabolism, and functions in plants and some bacteria to provide nitrogen, particularly when other nitrogen sources are depleted. Ataah mutant seeds are more dormant and accumulate high levels of allantoate, allantoin and urea, whereas energy-related metabolites and several amino acids are lower upon seed imbibition in comparison with Columbia-0. AtAAH expression could be detected during the early stages of seed development, with a transient increase around 8 d after pollination. AtAAH expression is the highest in mature pollen. The application of exogenous potassium nitrate can partly complement the higher dormancy phenotype of the Ataah mutant seeds, whereas other nitrogen sources cannot. Our results indicate that potassium nitrate does not specifically overcome the alleviated dormancy levels in Ataah mutant seeds, but promotes germination in general. Possible pathways by which AtAAH affects seed germination are discussed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Nitratos/metabolismo , Nitratos/farmacologia , Nitrogênio/metabolismo , Dormência de Plantas/genética , Compostos de Potássio , Sementes/metabolismo , Ureo-Hidrolases
8.
Plants (Basel) ; 11(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35736721

RESUMO

Non-dormant seeds are continuously aging and deteriorating during storage, leading to declining seed vigor, which is a challenge for the rice seed industry. Improving the storability of seeds is of great significance to ensure the quality of rice and national food security. Through a set of chromosome segment substitution lines population constructed using japonica rice NIP as donor parent and indica rice ZS97 as recurrent parent, we performed seed storability QTL analysis and selected four non-storable NILs to further investigate the storability regulatory mechanisms underlying it. The seeds were divided into four tissues, which were the embryo, endosperm, aleurone layer, and hull, and tissue-specific transcriptome and metabolome analyses were performed on them. By exploring the common differentially expressed genes and differentially accumulated metabolites, as well as the KEGG pathway of the four non-storable NILs, we revealed that the phenylpropanoid biosynthesis pathway and diterpenoid biosynthesis pathway played a central role in regulating seed storability. Integrated analysis pinpointed 12 candidate genes that may take part in seed storability. The comprehensive analysis disclosed the divergent and synergistic effect of different seed tissues in the regulation of rice storability.

9.
Hortic Res ; 92022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35040976

RESUMO

Gummosis, one of the most detrimental diseases to the peach industry worldwide, can be induced by Lasiodiplodia theobromae. Ethylene (ET) is known to trigger the production of gum exudates, but the mechanism underlying fungus-induced gummosis remains unclear. In this study, L. theobromae infection triggered the accumulation of ET and jasmonic acid (JA) but not salicylic acid (SA) in a susceptible peach variety. Gaseous ET and its biosynthetic precursor increased gum formation, whereas ET inhibitors repressed it. SA and methyl-jasmonate treatments did not influence gum formation. RNA-seq analysis indicated that L. theobromae infection and ET treatment induced a shared subset of 1808 differentially expressed genes, which were enriched in the category "starch and sucrose, UDP-sugars metabolism". Metabolic and transcriptional profiling identified a pronounced role of ET in promoting the transformation of primary sugars (sucrose, fructose, and glucose) into UDP-sugars, which are substrates of gum polysaccharide biosynthesis. Furthermore, ethylene insensitive3-like1 (EIL1), a key transcription factor in the ET pathway, could directly target the promoters of the UDP-sugar biosynthetic genes UXS1a, UXE, RGP and MPI and activate their transcription, as revealed by firefly luciferase and yeast one-hybrid assays. On the other hand, the supply of SA and inhibitors of ET and JA decreased the lesion size. ET treatment reduced JA levels and the transcription of the JA biosynthetic gene OPR but increased the SA content and the expression of its biosynthetic gene PAL. Overall, we suggest that endogenous and exogenous ET aggravate gummosis disease by transactivating UDP-sugar metabolic genes through EIL1 and modulating JA and SA biosynthesis in L. theobromae-infected peach shoots. Our findings shed light on the molecular mechanism by which ET regulates plant defense responses in peach during L. theobromae infection.

10.
Plant Physiol ; 186(1): 469-482, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33570603

RESUMO

Seed storability largely determines the vigor of seeds during storage and is significant in agriculture and ecology. However, the underlying genetic basis remains unclear. In the present study, we report the cloning and characterization of the rice (Oryza sativa) indole-3-acetic acid (IAA)-amido synthetase gene GRETCHEN HAGEN3-2 (OsGH3-2) associated with seed storability. OsGH3-2 was identified by performing a genome-wide association study in rice germplasms with linkage mapping in chromosome substitution segment lines, contributing to the wide variation of seed viability in the populations after long periods of storage and artificial ageing. OsGH3-2 was dominantly expressed in the developing seeds and catalyzed IAA conjugation to amino acids, forming inactive auxin. Transgenic overexpression, knockout, and knockdown experiments demonstrated that OsGH3-2 affected seed storability by regulating the accumulation level of abscisic acid (ABA). Overexpression of OsGH3-2 significantly decreased seed storability, while knockout or knockdown of the gene enhanced seed storability compared with the wild-type. OsGH3-2 acted as a negative regulator of seed storability by modulating many genes related to the ABA pathway and probably subsequently late embryogenesis-abundant proteins at the transcription level. These findings shed light on the molecular mechanisms underlying seed storability and will facilitate the improvement of seed vigor by genomic breeding and gene-editing approaches in rice.


Assuntos
Ácido Abscísico/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sementes/química
11.
Front Plant Sci ; 12: 794881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975982

RESUMO

Autotoxicity is known as a critical factor in replanting problem that reduces land utilization and creates economic losses. Benzoic acid (BA) is identified as a major autotoxin in peach replant problem, and causes stunted seedling growth or even death. However, the physiological and molecular mechanisms of peach response to BA stress remain elusive. Here, we comprehensively studied the morphophysiological, transcriptional, and metabolic responses of peach plants to BA toxicity. Results showed that BA stress inhibited peach seedlings growth, decreased chlorophyll contents and fluorescence levels, as well as disturbed mineral metabolism. The contents of hydrogen peroxide, superoxide anion, and malondialdehyde, as well as the total antioxidant capacity, were significantly increased under BA stress. A total of 6,319 differentially expressed genes (DEGs) were identified after BA stress, of which the DEGs related to photosynthesis, redox, and ion metabolism were greatly changed; meanwhile, numerous stress-responsive genes (HSPs, GSTs, GR, and ABC transporters) and transcription factors (MYB, AP2/ERF, NAC, bHLH, and WRKY) were noticeably altered under BA stress. BA induced metabolic reprogramming, and 74 differentially accumulated metabolites, including amino acids and derivatives, fatty acids, organic acids, sugars, and sugar alcohols, were identified in BA-stressed roots. Furthermore, an integrated analysis of genes and metabolites indicated that most of the co-mapped KEGG pathways were enriched in amino acid and carbohydrate metabolism, which implied a disturbed carbon and nitrogen metabolism after BA stress. The findings would be insightful in elucidating the mechanisms of plant response to autotoxicity stress, and help guide crops in alleviating replant problem.

12.
Front Plant Sci ; 11: 563548, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193492

RESUMO

Transmission ratio distortion (TRD) refers to a widespread phenomenon in which one allele is transmitted by heterozygotes more frequently to the progeny than the opposite allele. TRD is considered as a mark suggesting the presence of a reproductive barrier. However, the genetic and molecular mechanisms underlying TRD in rice remain largely unknown. In the present study, a population of backcross inbred lines (BILs) derived from the cross of a japonica cultivar Nipponbare (NIP) and an indica variety 9311 was utilized to study the genetic base of TRD. A total of 18 genomic regions were identified for TRD in the BILs. Among them, 12 and 6 regions showed indica (9311) and japonica (NIP) alleles with preferential transmission, respectively. A series of F2 populations were used to confirm the TRD effects, including six genomic regions that were confirmed by chromosome segment substitution line (CSSL)-derived F2 populations from intersubspecific allelic combinations. However, none of the regions was confirmed by the CSSL-derived populations from intrasubspecific allelic combination. Furthermore, significant epistatic interaction was found between TRD1.3 and TRD8.1 suggesting that TRD could positively contribute to breaking intersubspecific reproductive barriers. Our results have laid the foundation for identifying the TRD genes and provide an effective strategy to breakdown TRD for breeding wide-compatible lines, which will be further utilized in the intersubspecific hybrid breeding programs.

13.
Plants (Basel) ; 9(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370066

RESUMO

Climate changes play a central role in the adaptive life histories of organisms all over the world. In higher plants, these changes may impact seed performance, both during seed development and after dispersal. To examine the plasticity of seed performance as a response to environmental fluctuations, eight genotypes known to be affected in seed dormancy and longevity were grown in the field in all seasons of two years. Soil and air temperature, day length, precipitation, and sun hours per day were monitored. We show that seed performance depends on the season. Seeds produced by plants grown in the summer, when the days began to shorten and the temperature started to decrease, were smaller with deeper dormancy and lower seed longevity compared to the other seasons when seeds were matured at higher temperature over longer days. The performance of seeds developed in the different seasons was compared to seeds produced in controlled conditions. This revealed that plants grown in a controlled environment produced larger seeds with lower dormancy than those grown in the field. All together the results show that the effect of the environment largely overrules the genetic effects, and especially, differences in seed dormancy caused by the different seasons were larger than the differences between the genotypes.

14.
Int J Mol Sci ; 21(4)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079255

RESUMO

Timing of germination determines whether a new plant life cycle can be initiated; therefore, appropriate dormancy and rapid germination under diverse environmental conditions are the most important features for a seed. However, the genetic architecture of seed dormancy and germination behavior remains largely elusive. In the present study, a linkage analysis for seed dormancy and germination behavior was conducted using a set of 146 chromosome segment substitution lines (CSSLs), of which each carries a single or a few chromosomal segments of Nipponbare (NIP) in the background of Zhenshan 97 (ZS97). A total of 36 quantitative trait loci (QTLs) for six germination parameters were identified. Among them, qDOM3.1 was validated as a major QTL for seed dormancy in a segregation population derived from the qDOM3.1 near-isogenic line, and further delimited into a genomic region of 90 kb on chromosome 3. Based on genetic analysis and gene expression profiles, the candidate genes were restricted to eight genes, of which four were responsive to the addition of abscisic acid (ABA). Among them, LOC_Os03g01540 was involved in the ABA signaling pathway to regulate seed dormancy. The results will facilitate cloning the major QTLs and understanding the genetic architecture for seed dormancy and germination in rice and other crops.


Assuntos
Cromossomos de Plantas , Germinação/genética , Oryza/genética , Dormência de Plantas/genética , Ácido Abscísico/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Ligação Genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/genética , Transcriptoma
15.
Int J Mol Sci ; 20(18)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505900

RESUMO

Seed storability, defined as the ability to remain alive during storage, is an important agronomic and physiological characteristic, but the underlying genetic mechanism remains largely unclear. Here, we report quantitative trait loci (QTLs) analyses for seed storability using a high-density single nucleotide polymorphism linkage map in the backcross recombinant inbred lines that was derived from a cross of a japonica cultivar, Nipponbare, and an indica cultivar, 9311. Seven putative QTLs were identified for seed storability under natural storage, each explaining 3.6-9.0% of the phenotypic variation in this population. Among these QTLs, qSS1 with the 9311 alleles promoting seed storability was further validated in near-isogenic line and its derived-F2 population. The other locus (qSS3.1) for seed storability colocalized with a locus for germination ability under hydrogen peroxide, which is recognized as an oxidant molecule that causes lipid damage. Transgenic experiments validated that a candidate gene (OsFAH2) resides the qSS3.1 region controlling seed storability and antioxidant capability. Overexpression of OsFAH2 that encodes a fatty acid hydroxylase reduced lipid preoxidation and increased seed storability. These findings provide new insights into the genetic and physiological bases of seed storability and will be useful for the improvement of seed storability in rice.


Assuntos
Antioxidantes , Genes de Plantas , Oryza/genética , Característica Quantitativa Herdável , Sementes/genética , Peroxidação de Lipídeos/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oryza/metabolismo , Polimorfismo de Nucleotídeo Único , Sementes/metabolismo
16.
Plant J ; 85(4): 451-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26729600

RESUMO

The seed expressed gene DELAY OF GERMINATION (DOG) 1 is absolutely required for the induction of dormancy. Next to a non-dormant phenotype, the dog1-1 mutant is also characterized by a reduced seed longevity suggesting that DOG1 may affect additional seed processes as well. This aspect however, has been hardly studied and is poorly understood. To uncover additional roles of DOG1 in seeds we performed a detailed analysis of the dog1 mutant using both transcriptomics and metabolomics to investigate the molecular consequences of a dysfunctional DOG1 gene. Further, we used a genetic approach taking advantage of the weak aba insensitive (abi) 3-1 allele as a sensitized genetic background in a cross with dog1-1. DOG1 affects the expression of hundreds of genes including LATE EMBRYOGENESIS ABUNDANT and HEAT SHOCK PROTEIN genes which are affected by DOG1 partly via control of ABI5 expression. Furthermore, the content of a subset of primary metabolites, which normally accumulate during seed maturation, was found to be affected in the dog1-1 mutant. Surprisingly, the abi3-1 dog1-1 double mutant produced green seeds which are highly ABA insensitive, phenocopying severe abi3 mutants, indicating that dog1-1 acts as an enhancer of the weak abi3-1 allele and thus revealing a genetic interaction between both genes. Analysis of the dog1 and dog1 abi3 mutants revealed additional seed phenotypes and therefore we hypothesize that DOG1 function is not limited to dormancy but that it is required for multiple aspects of seed maturation, in part by interfering with ABA signalling components.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Epistasia Genética , Perfilação da Expressão Gênica , Germinação , Modelos Biológicos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Dormência de Plantas , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Transcriptoma
17.
Plant Cell Physiol ; 57(3): 473-87, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26738545

RESUMO

Seed performance is affected by the seed maturation environment, and previously we have shown that temperature, nitrate and light intensity were the most influential environmental factors affecting seed performance. Seeds developed in these environments were selected to assess the underlying metabolic pathways, using a combination of transcriptomics and metabolomics. These analyses revealed that the effects of the parental temperature and nitrate environments were reflected by partly overlapping genetic and metabolic networks, as indicated by similar changes in the expression levels of metabolites and transcripts. Nitrogen metabolism-related metabolites (asparagine, γ-aminobutyric acid and allantoin) were significantly decreased in both low temperature (15 °C) and low nitrate (N0) maturation environments. Correspondingly, nitrogen metabolism genes (ALLANTOINASE, NITRATE REDUCTASE 1, NITRITE REDUCTASE 1 and NITRILASE 4) were differentially regulated in the low temperature and nitrate maturation environments, as compared with control conditions. High light intensity during seed maturation increased galactinol content, and displayed a high correlation with seed longevity. Low light had a genotype-specific effect on cell surface-encoding genes in the DELAY OF GERMINATION 6-near isogenic line (NILDOG6). Overall, the integration of phenotypes, metabolites and transcripts led to new insights into the regulation of seed performance.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Nitratos/farmacologia , Sementes/genética , Sementes/fisiologia , Temperatura , Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Dessecação , Meio Ambiente , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Luz , Redes e Vias Metabólicas/efeitos da radiação , Metaboloma/efeitos dos fármacos , Metabolômica , Fenótipo , Dormência de Plantas/efeitos dos fármacos , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/efeitos dos fármacos , Sementes/efeitos da radiação , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
18.
Planta ; 241(6): 1435-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25716094

RESUMO

MAIN CONCLUSION: Strigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress. Strigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.


Assuntos
Ácido Abscísico/metabolismo , Lactonas/metabolismo , Lotus/metabolismo , Pressão Osmótica , Raízes de Plantas/metabolismo , Estresse Fisiológico , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Lactonas/farmacologia , Lotus/efeitos dos fármacos , Lotus/genética , Fosfatos/farmacologia , Exsudatos de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
19.
J Exp Bot ; 65(22): 6603-15, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25240065

RESUMO

Seed performance after dispersal is highly dependent on parental environmental cues, especially during seed formation and maturation. Here we examine which environmental factors are the most dominant in this respect and whether their effects are dependent on the genotypes under investigation. We studied the influence of light intensity, photoperiod, temperature, nitrate, and phosphate during seed development on five plant attributes and thirteen seed attributes, using 12 Arabidopsis genotypes that have been reported to be affected in seed traits. As expected, the various environments during seed development resulted in changed plant and/or seed performances. Comparative analysis clearly indicated that, overall, temperature plays the most dominant role in both plant and seed performance, whereas light has a prominent impact on plant traits. In comparison to temperature and light, nitrate mildly affected some of the plant and seed traits while phosphate had even less influence on those traits. Moreover, clear genotype-by-environment interactions were identified. This was shown by the fact that individual genotypes responded differentially to the environmental conditions. Low temperature significantly increased seed dormancy and decreased seed longevity of NILDOG1 and cyp707a1-1, whereas low light intensity increased seed dormancy and decreased seed longevity of NILDOG3 and NILDOG6. This also indicates that different genetic and molecular pathways are involved in the plant and seed responses. By identifying environmental conditions that affect the dormancy vs longevity correlation in the same way as previously identified naturally occurring loci, we have identified selective forces that probably shaped evolution for these important seed traits.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Meio Ambiente , Interação Gene-Ambiente , Sementes/genética , Sementes/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Flores/efeitos dos fármacos , Flores/fisiologia , Flores/efeitos da radiação , Genótipo , Germinação/efeitos dos fármacos , Germinação/efeitos da radiação , Luz , Manitol/farmacologia , Modelos Biológicos , Dormência de Plantas/efeitos dos fármacos , Dormência de Plantas/efeitos da radiação , Característica Quantitativa Herdável , Reprodução/efeitos dos fármacos , Reprodução/efeitos da radiação , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...